Deconstructing the Mixture-of-Experts (MoE) Architecture
Introduction: The Scaling Dilemma Traditional transformer models face a fundamental trade-off: to increase model capacity, you must scale all parameters proportionally. If you want a smarter model, every single token must pass through every single parameter. This is dense activation, and it’s extremely expensive. Enter Mixture-of-Experts (MoE): a revolutionary architecture that achieves massive model capacity while keeping computational costs manageable through sparse activation. Models like GPT-4, Mixtral, and Switch Transformer use MoE to reach trillion-parameter scales while using only a fraction of those parameters per token. ...